

Description

- 1. Can be used for a variety of operating conditions and load.
- 2. Provides low-speed flash steam and water entrainment.
- 3. To improve the thermal effciency of the device.

Selection of possible applications

During the transfer of high-pressure and high-temperature condensate, the pressure changes cause high-temperature condensate to change into secondary steam, which is recycled by the flash steam pot so as to supply steam for low-pressure steam using equipment for the purpose of effective reduction of energy waste.

Selection of possible flow media

Steam

FFT Forex flash tank

Dimensions and Weights(mm/kg)

Туре	A	В	С	D	Е	F	G	Н	I	J
FFT-6	914	608	226	1370	989	159	2"	2-1/2"	1-1/2"	3/4"
FFT-8	914	608	226	1370	989	219	3"	4"	1-1/2"	1"
FFT-12	1016	707	274	1530	1139	312	4"	6"	2"	1-1/2"
FFT-16	1219	790	281	1740	1349	412	6"	6"	2"	2"

Materials

1	Body		Cast steel	ÿÿÿÿÿ ASTM A216 WCB
2	Cover		Cast steel	ASTM_ 216 WCB
3	Bolts	Steel	AST	M A105
4	Bush	Steel	AS	ΓM A105

Limits (ISO 6552)

Body design conditions	ANSI clas 150/PN10			
Maximum allowable pressure	145 psi g/10bar g			
Maximum allowable temperature	500°F/260°C			
Maximum operating pressure				
for saturated steam service	145 psi/10 bar			

Flash Steam Savings Analysis

Part I: Determining the amount of flash steam produced

Turt I. Determining the uniount of musir steam	ii produced
A.Condensate Load	A = kg/h
B.Annual hours of operation	B=/year
C.Steam Cost	C =€/ton
D. Flash steam percentage from chart	
(on page CRE-257)	D =
E. Flash steam produced:	
$D \times A = flash steam produced$	E = kg/h
Part II: Determining value of the flash steam	
F. Annual flash steam savings:	
$F = E \times B \times C$	F = € /year

How much flash steam is available?

1 000

- $1. \ Follow \ horizontal \ axis \ right \ to \ primary \ discharge \ pressure.$
- 2. Follow vertically up to secondary pressure curve.
- 3. Move left to •Percentage of flash steamŽ.

Example:

Condensate load = 4 500 kg/h Primary pressure = 4,5 bar Secondary pressure = 0,6 bar

 $\begin{array}{lll} \mbox{Percentage of flash} & = & 10.6\% \\ \mbox{Secondary steam load} & = & 464 \ kg/h \\ \mbox{(4 500 kg/h x 0,106 = 464 kg/h)} \end{array}$

Selection: Model FFT-12

Size and connections

2" -6"Flange EN1092 PN16,ANSI B 16.5 class150

Capcities

Type	Maximum Condensate Load M	aximum Flash Load	
Type	kg/h	kg/h	
FFT-6	900	230	
FFT-8	2270	450	
FFT-12	4540	900	
FFT-16	9070	1360	

Percentage of Flash Steam formed when discharging Condensate to Reduced Pressure

Pressure in bar from which Condensate Is discharged

Percentage of Flash Steam